Symbolic Dynamics for the Geodesic Flow on Locally Symmetric Orbifolds of Rank One
نویسنده
چکیده
We present a strategy for a geometric construction of cross sections for the geodesic flow on locally symmetric orbifolds of rank one. We work it out in detail for Γ\H, where H is the upper half plane and Γ = PΓ0(p), p prime. Its associated discrete dynamical system naturally induces a symbolic dynamics on R. The transfer operator produced from this symbolic dynamics has a particularly simple structure.
منابع مشابه
On the number of ends of rank one locally symmetric spaces
Let Y be a noncompact rank one locally symmetric space of finite volume. Then Y has a finite number e(Y ) > 0 of topological ends. In this paper, we show that for any n ∈ N, the Y with e(Y ) ≤ n that are arithmetic fall into finitely many commensurability classes. In particular, there is a constant cn such that n-cusped arithmetic orbifolds do not exist in dimension greater than cn. We make thi...
متن کاملA prime geodesic theorem for higher rank spaces
A prime geodesic theorem for regular geodesics in a higher rank locally symmetric space is proved. An application to class numbers is given. The proof relies on a Lefschetz formula for higher rank torus actions.
متن کاملThe prime geodesic theorem for higher rank spaces
The prime geodesic theorem for regular geodesics in a higher rank locally symmetric space is proved. An application to class numbers is given. The proof relies on a Lefschetz formula that is based on work of Andreas Juhl.
متن کاملA Lefschetz formula for higher rank
In this paper a Lefschetz formula is proved for the geodesic flow of a compact locally symmetric space. The flow is described in terms of actions of split tori of various dimensions and the geometric side of the Lefschetz formula is a sum over closed geodesics which correspond to a given torus. The cohomological side is given in terms of Lie algebra cohomology.
متن کاملConsequences of Ergodic Frame Flow for Rank Rigidity in Negative Curvature
This paper presents a rank rigidity result for negatively curved spaces. Let M be a compact manifold with negative sectional curvature and suppose that along every geodesic in M there is a parallel vector field making curvature −a with the geodesic direction. We prove that M has constant curvature equal to −a if M is odd dimensional, or if M is even dimensional and has sectional curvature pinch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008